
December 2021

Stader Security Audit Report

Security Assessment

Summary

This report has been prepared for Stader Labs to discover issues and vulnerabilities
in the source code of the staking contract as well as any contract dependencies that
were not part of an officially recognized library. A comprehensive examination has
been performed, utilizing Static Analysis, Manual Review, and Testnet Deployment
techniques.

The auditing process pays special attention to the following considerations:

• Testing the smart contracts against both common and uncommon attack
vectors

• Assessing the codebase to ensure compliance with current best practices
and industry standards

• Ensuring contract logic meets the specifications and intentions of the client

• Cross referencing contract structure and implementation against similar
smart contracts produced by industry leaders

• Thorough line-by-line manual review of the entire codebase by industry
experts

The security assessment resulted in findings that ranged from critical to informa-
tional. We recommend addressing these findings to ensure a high level of security
standards and industry practices. We suggest recommendations that could better
serve the project from the security perspective:

• Enhance general coding practices for better structures of source codes

• Add enough unit tests to cover the possible use cases

• Provide more comments per each function for readability, especially con-
tracts that are verified in public

• Provide more transparency on privileged activities once the protocol is live

2

Overview

Project Summary

Project Name Stader
Description Stader offers the most convenient &

safest way to maximize your returns
on staking.

Platform Terra
Language Rust
Codebase (Private)
Commits e2561633859cc846be

a024854b61248dd6f28665

Audit Summary

Delivery Date Dec 05, 2021
Audit Methodology Static Analysis, Manual Review
Key Components Airdrops Registry, Reward Contract,

Staking Contract

3

Audit Scope

Name File SHA Checksum
Airdrops Registry contracts/airdrops-

registry/src/contract.rs
a12f946871267f6d3be2
964177ff31a29f0dceb9c51
37e284602748cb031caf0

Reward Contract contracts/reward/
src/contract.rs

4a317d7c767c636d87452
5acc4b39c7980269bf84b7
89668ee99120aae90ac3e

Staking Contract contracts/staking/
src/contract.rs

a6ddf316bef4f34597073d
2ca51f38042e68bf33528
b8131bd18d944e9d5ba19

4

Contents

1 Understandings 7
1.1 Overview . 7
1.2 Plain Staking . 7
1.3 Liquid Staking . 8
1.4 Privileged Functions . 8
1.5 Risks of Exchange Rate Manipulation 9
1.6 Consistency with Specifications 10

2 Findings 11
2.1 SSL-01 | Unclear error message 12

2.1.1 Description . 12
2.1.2 Recommendation . 12
2.1.3 Alleviation . 12

2.2 SSL-02 | Redundant code . 12
2.2.1 Description . 13
2.2.2 Recommendation . 13
2.2.3 Alleviation . 13

2.3 SSL-03 | Unoptimized loop . 13
2.3.1 Description . 13
2.3.2 Recommendation . 14
2.3.3 Alleviation . 14

2.4 SSL-04 | Missing event emitting 14
2.4.1 Description . 14
2.4.2 Recommendation . 14
2.4.3 Alleviation . 15

2.5 SSL-05 | Missing error type . 15
2.5.1 Description . 15
2.5.2 Recommendation . 15
2.5.3 Alleviation . 15

2.6 SSL-06 | Improper variable name 16
2.6.1 Description . 16
2.6.2 Recommendation . 16
2.6.3 Alleviation . 16

5

Contents

2.7 SSL-07 | Unoptimized coding block 17
2.7.1 Description . 17
2.7.2 Recommendation . 17
2.7.3 Alleviation . 17

2.8 SSL-08 | Privileged ownership . 18
2.8.1 Description . 18
2.8.2 Recommendation . 18
2.8.3 Alleviation . 18

2.9 SSL-09 | Possibility of for loop exceeds block limit 19
2.9.1 Description . 19
2.9.2 Recommendation . 19
2.9.3 Alleviation . 19

2.10 SSL-10 | Unused imports . 20
2.10.1 Description . 20
2.10.2 Recommendation . 20
2.10.3 Alleviation . 20

Appendices 21

Appendix A 22
Exchange Rate Manipulation Analysis 22

Appendix B 25
Consistency with Specifications . 25

Appendix C 25
Finding Categories . 25

6

1 Understandings

1.1 Overview

The Stader Protocol is a decentralized staking protocol supported on different
blockchains. This audit report is specific to Terra’s version of its protocol. Stader
employs two novel features in it’s protocol: plain staking and liquid staking. Plain
staking accumulates staking rewards from curated validators pool, while liquid
staking enables users to enjoy LP incentives across DEXs and leverage the liquid
token while accruing staking rewards.

In addition, it supports community farming for users to earn SD tokens if they
stake their LUNA in the first two month since launch.

Users can choose any validator pools, which are a set of multiple validators
carefully curated based on their performance to ensure the best returns for users,
to stake their token. Once placed into the pool, there are different staking
strategies for users to choose. For the auto-compounding strategy, after the
community farming stage, the user will be charged 3% of the reward as fee.
There will be different fee structures for each strategy.

1.2 Plain Staking

Stader stake pools went live on Terra on November 23rd. The staking pool already
caters to the staking needs of over 7200 users on Terra and has a TVL of over 4.2
M Luna. Currently, there are 3 validator pools on Stader:

1. Blue Chip with 5 validators

2. Airdrops Plus with 3 validators

3. Community with 5 validators

The selection criteria for the validators has been the following:

1. Uptime criteria > 99.85% measured between 1st Oct ’21 and 1st Nov ’21

7

1 Understandings

2. No slashing in the past 3 months

3. 1–2 Pool-specific criteria

There will be a 1% withdrawal fee if users undelegate their token from a pool
during the first two month. The unbonding period is 21 days and there will not
be any reward during undelegation.

1.3 Liquid Staking

Stader supports liquid staking by introducing a token called LunaX. LunaX is a
liquid staking token that enables instant unlocking of staked Luna & opens up
possibilities across DeFi protocols. Here’s a look at the key mechanisms across
the life-cycle of LunaX.

1. Minting: Users can mint LunaX by staking with the Stader liquidity pool.
The deposit function is invoked when users deposit tokens into a pool and
the LunaX is minted by Lunax cw20_contract

(address: terra1xacqx447msqp46qmv8k2sq6v5jh9fdj37az898).

2. Value Accrual & Slashing:

a) Accrual: The rewards generated on the staked Luna (including stable-
coins) would be restaked at regular intervals (24 hr to begin with).

b) Slashing: In the event of slashing, LunaX supply remains the same but
the price goes down as the quantity of Luna staked will decrease.

3. Airdrops to LunaX: Weekly snapshots will be taken at a random time & all
holders of LunaX would be allocated protocol airdrops like ANC, MIR, VKR,
MINE etc.

4. Burning: Users can burn LunaX and unstake Luna at the current exchange
rate for a small withdrawal fee.

1.4 Privileged Functions

The contract contains the following privileged functions that can only be called
if the caller is config.manager, which is determined on the instantiation of the
contract. They are used to modify the contract configurations and address
attributes. We grouped these functions below:

8

1 Understandings

Updating configuration parameters when calling update_config():

• Parameters that can be updated:

– cw20_token_contract

– airdrop_registry_contract

– min_deposit

– max_deposit

– active

– protocol_deposit_fee

– protocol_withdraw_fee

– protocol_reward_fee

– undelegation_cooldown

– unbonding_period

– swap_cooldown

– reinvest_cooldown

Curating the validators pool by adding or removing validator:

• add_validator()

• remove_validator_from_pool()

Administrative operation of maintaining the staking pool:

• rebalance_pool()

• swap_rewards()

• reinvest()

1.5 Risks of Exchange Rate Manipulation

We analyzed multiple risk factors concerning exchange rate manipulation. In
conclusion, there isn’t major risks regarding the mechanism of liquidity tokens.
For further references, please read Appendix A.

9

1 Understandings

1.6 Consistency with Specifications

The team has successfully implemented functions according to the specifications.
We list the conclusion below:

• Instant Liquidity: This is implemented by introducing the liquid staking
token LunaX. Users will receive the minted token once they deposit into the
Staking contract.

• Increased Profits: The Stader Team maintains a set of scripts that will
periodically redeem the contract rewards and reinvest into the staking pool
for auto-compounding purposes.

For detailed reference, please read Appendix B.

10

2 Findings

ID Title Category Severity Status

SSL-01 Unclear error message Coding Style Informational Acknowledged

SSL-02 Redundant code Logical Issue Informational Acknowledged

SSL-03 Unoptimized loop break Gas Optimization Medium Acknowledged

SSL-04 Missing event emitting Coding Style Informational Acknowledged

SSL-05 Missing error type Logical Issue Minor Acknowledged

SSL-06 Improper variable name Coding Style Informational Acknowledged

SSL-07 Unoptimized code block Gas Optimization Medium Acknowledged

SSL-08 Privileged ownership Centralization / Privilege Minor Acknowledged

SSL-09 Possibility of for loop exceeds block limit Volatile Code Medium Acknowledged

SSL-10 Unused imports Coding Style Minor Acknowledged

11

2 Findings

2.1 SSL-01 | Unclear error message

Category Severity Location Status

Coding Style Minor staking/contract.rs: 1123 Acknowledged

2.1.1 Description

The error message in the following code snippet is unclear.

1 compute_withdrawable_funds(deps.storage, batch_id, &user_addr)
2 .expect("compute_withdrawable_funds failed")}

2.1.2 Recommendation

The original error message was “compute_withdrawable_funds failed". We rec-
ommend it to be “Failure while computing withdrawable funds”.

2.1.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

2.2 SSL-02 | Redundant code

Category Severity Location Status

Logical Issue Informational staking/contract.rs: 711 Acknowledged

12

2 Findings

2.2.1 Description

Contract state update is unnecessary since the state won’t be changed in this case.

2.2.2 Recommendation

The following code can be removed:

1 STATE.save(deps.storage, &state)?

2.2.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

2.3 SSL-03 | Unoptimized loop

Category Severity Location Status

Gas Optimization Medium staking/contract.rs: 772 Acknowledged

2.3.1 Description

In the following code snippet, the loop-breaking condition check should be
executed before any other operation. Note that this does not affect users’ funds
in any way but only the gas cost of the contract operator.

1 for index in (0..stake_tuples.len()).rev() {
2 let tuple_val = stake_tuples.get(index).unwrap().clone();
3 if to_undelegate.is_zero() {
4 break;
5 }
6 }

13

2 Findings

2.3.2 Recommendation

We advise changing the code to:

1 for index in (0..stake_tuples.len()).rev() {
2 if to_undelegate.is_zero() {
3 break;
4 }
5 let tuple_val = stake_tuples.get(index).unwrap().clone();
6 }
7 }

2.3.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

2.4 SSL-04 | Missing event emitting

Category Severity Location Status

Coding Style Informational */contract.rs Acknowledged

2.4.1 Description

In the contracts, there are several functions that can change the state variables or
perform informational operations. However, these functions do not emit events
to pass the changes out of the chain.

2.4.2 Recommendation

Avoid using Response::default(). Each state updated should have an event
emitted.

14

2 Findings

2.4.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

2.5 SSL-05 | Missing error type

Category Severity Location Status

Logical Issue Minor staking/contract.rs: 345, 459, 487 Acknowledged

2.5.1 Description

There are missing error types for the following functions:

1. check_slashing()

2. compute_deposit_breakdown()

3. redeem_rewards()

2.5.2 Recommendation

We advise adding error types to the above functions. Such as:

1. ContractError:UpdateSlashingError

2. ContractError:ComputeError

3. ContractError:RedeemError

2.5.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

15

2 Findings

2.6 SSL-06 | Improper variable name

Category Severity Location Status

Coding Style Informational staking/contract.rs:164, 344, 523 Acknowledged

2.6.1 Description

There are several variables that are not named properly. We describe the findings
in the following:

1. The config.active is only used in deposit(), not in other functions

2. The check_slashing function not only checks slashing but may also update
STATE(total_staked, exchange_rate) and VALIDATOR_META(staked, slashed)

3. The swap_rewards() function swaps all rewards only into Luna, no other
tokens.

2.6.2 Recommendation

We suggest to do the following adjustment:

1. Rename config.active to config.is_open_for_deposit

2. Rename check_slashing function to update_slashing

3. Rename swap_rewards() to swap_rewards_to_luna()

2.6.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

16

2 Findings

2.7 SSL-07 | Unoptimized coding block

Category Severity Location Status

Gas Optimization Medium staking/contract.rs: 733 Acknowledged

2.7.1 Description

The contract uses get_active_validators_sorted_by_stake() to get a valida-
tors list sorted by the staking amount. Then, it reverses the loop and iterates it to
undelegate from the largest staked validators until the fulfillment of the intended
undelegation amount.

1 let stake_tuples = get_active_validators_sorted_by_stake(
2 deps.querier,
3 env.contract.address.clone(),
4 validators,
5)?;
6

7 for index in (0..stake_tuples.len()).rev() {
8 ...
9 }

2.7.2 Recommendation

Instead of sorting the validator array in ascending order and calling .rev() after-
ward, we advise the following changes for run-time optimization:

1 use std::cmp::Reverse;
2 vec.sort_by_key(|w| Reverse(*w));

2.7.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

17

2 Findings

2.8 SSL-08 | Privileged ownership

Category Severity Location Status

Centralization / Privilege Minor staking/contract.rs Acknowledged

2.8.1 Description

The manager of the Staking contract has the permission to:

1. update contract configurations

2. add new validators

3. remove existing validators

4. rebalance delegation between validators

without obtaining the consensus of the community.

In the worst-case scenario, the manager can set the protocol_withdraw_fee to
100% and users will lose all funds when calling withdraw_funds_to_wallet().

2.8.2 Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock
plus multisig governing procedure and let the community monitor in respect of
transparency considerations. It is also advised to set a maximum possible value
of the protocol_withdraw_fee to limit the power of the manager.

2.8.3 Alleviation

[Stader Team]:

• Validators are handpicked by Stader based on the data of past performance.
This isn’t data available on Terra blockchain currently but rather through an
analysis on the off-chain side. Once a set of validators are selected, Stader
will monitor, readjust validators once a month.

• Our UI will show how much the withdrawal fee is directly reading from the
contract. Thus this is not going to be an issue. Further, we let this flexibility

18

2 Findings

remain so as to deploy some of these contracts for specific firms so they can
manage it themselves. This gives them greater flexibility.

2.9 SSL-09 | Possibility of for loop exceeds block
limit

Category Severity Location Status

Volatile Code Medium staking/contract.rs: 350, 497, 772 Acknowledged

2.9.1 Description

There are loops that iterate through the validators list, which might potentially
result in exceeding the block limit.

1 for val_addr in state.validators.iter(){
2 };
3 for val_addr in state.validators{
4 };
5 for index in (0..stake_tuples.len()).rev(){
6 };

2.9.2 Recommendation

We recommend adding block limit variables for each for loop as condition checks.

2.9.3 Alleviation

[Stader Team]: We will likely not address this as we expect only 10 validators
in our business logic in the staking contract. Test runs have succeeded without
timing out.

19

2 Findings

2.10 SSL-10 | Unused imports

Category Severity Location Status

Coding Style Minor staking/contract.rs Acknowledged

2.10.1 Description

There are unused imports in Stader’s contracts, which could be removed.

2.10.2 Recommendation

We recommend using the “organized import” shortcut in vscode to remove all the
unused imports.

2.10.3 Alleviation

The adjustment is beneficial but not crucial. The team acknowledged the finding.
Given that this will not affect the well-being of the users, the team decided
to retain the code base unchanged and keep the recommendations for future
updates.

20

Appendices

21

Appendix A

Exchange Rate Manipulation Analysis

Calculation Formula

exchange rate = total_staked / total_token_supply

Expectations

All of the following expectations have been tested to ensure the correctness.

1. Executing deposit() should not change the exchange rate

2. Executing undelegate_stake()should not change the exchange rate

3. Executing reinvest() should increase the exchange rate, since no new
tokens will be minted

4. If any of the validators has been slashed, the exchange rate should be
decreased

5. If new yield are generated from staking, the exchange rate should be
increased

Variables Analysis

• total_staked

– Functions that can update this variable:

* Increase

· deposit(): Update the value to increase by the current user’s
deposit subtracting the protocol fee

22

· reinvest(): Update the value to increase by the reward con-
tract’s balance subtracting protocol fee

· reimburse_slashing(): Update the value to increase by the
reimburse amount

· check_slashing(): Update the value to increase by the new
staking yield amount if there is any

* Decrease

· undelegate_stake(): Update the value to decrease by the
undelegation amount

· check_slashing(): Update the value to decrease by the slashed
amount if any of the validators has been slashed

• total_token_supply

– Functions that can update this variable:

* Increase

· deposit(): Update the value to increase by the new tokens to
mint with create_mint_message()

1. According to the provided contract code, the token minter is
set to the Staking contract and cannot be changed. There is
no other way to mint new tokens.

2. The token contract is based on cw20, a token standard
similar to ERC20, referencing this implementation where we
examined the token mint function: https://github.com/C
osmWasm/cw-plus/blob/6287de98c07f4d9be8ed610552ccb
d9987028491/contracts/cw20-base/src/contract.rs#L
278

3. We verified that the minter address of the token contract
shown in the Terra Explorer is the same as the Staking
contract address: terra1xacqx447msqp46qmv8k2sq6v5jh9
fdj37az898: https://finder.terra.money/mainnet/add
ress/terra17y9qkl8dfkeg4py7n0g5407emqnemc3yqk5rup.

* Decrease

· undelegate_stake(): Update the value to decrease by the
undelegated token amount with burn_minted_tokens()

1. Only the tokens minted by the Staking contract can be

23

https://github.com/CosmWasm/cw-plus/blob/6287de98c07f4d9be8ed610552ccbd9987028491/contracts/cw20-base/src/contract.rs#L278
https://github.com/CosmWasm/cw-plus/blob/6287de98c07f4d9be8ed610552ccbd9987028491/contracts/cw20-base/src/contract.rs#L278
https://github.com/CosmWasm/cw-plus/blob/6287de98c07f4d9be8ed610552ccbd9987028491/contracts/cw20-base/src/contract.rs#L278
https://github.com/CosmWasm/cw-plus/blob/6287de98c07f4d9be8ed610552ccbd9987028491/contracts/cw20-base/src/contract.rs#L278
https://finder.terra.money/mainnet/address/terra17y9qkl8dfkeg4py7n0g5407emqnemc3yqk5rup
https://finder.terra.money/mainnet/address/terra17y9qkl8dfkeg4py7n0g5407emqnemc3yqk5rup

burned. There is no other way to burn tokens.

Conclusion

The exchange rate may be changed under the following four scenarios. We
conclude that there aren’t major risk concerns:

1. Reinvest: Contract rewards will be reinvested periodically. It is less likely
that the rewards will surge in a short period of time.

2. Reimbursed slashing: Anyone can stake into the Staking contract without
minting new tokens which increases the exchange rate. The higher the
exchange rate, the higher the user_withdrawal_amount. However, an ad-
versary will not have incentive to pump the exchange rate like this because
he will not gain any LunaX token for his new stake. Furthermore, this
exchange rate pump will benefit all users with withdrawable funds. Other
users can simply withdraw their funds once they notice a higher exchange
rate. It is considered not profitable if there’s more than one user staking
and the relevant protocol fee is greater than 0

3. Validators slashed: the team clarified that the maximum amount a validator
can be slashed is around 5%. So far only once or twice has the 5% slashing
happened in Terra. Most slashing events are 0.01% of the total stake.
Given that Stader uses performance data to handpick validators, there’s a
good chance Stader will seldom see slashing happening across any of its
validators.

4. New staking yield generated: the staking yield generation should be stable
and slowly distributed to the eligible validators. It is unlikely to see a spike
in the yield amount if a user maliciously deposits and undelegates in a short
period of time.

1

1Note: deposit() and undelegate_stake() won’t change the exchange rate. Hence there is
no possibility to manipulate the exchange rate externally through common techniques such as
the flash loan attack.

24

Appendix B

Consistency with Specifications

Instant Liquidity

By introducing LunaX, which is minted to users upon deposit into the Staking
contract, there will be another pool for users to swap LunaX with Luna as in
common decentralized exchanges. Compared to undelegating directly through
Stader’s Staking contract, users can enjoy instant liquidity instead of waiting for
21 days to undelegate their stake.

Increased Profit

To maximize users’ profits, the Stader Team maintains a set of scripts to call
redeem_reward(), reinvest(), swap_rewards() every N hours. The two func-
tions are also available for the community to execute themselves in their best
interest. However, it should be noted that the auto-compounding will stop once
the above-mentioned functions are not executed.

For real time execution details, please refer to the Terra Explorer of the deployed
Staking contract at https://terra.stake.id/?#/address/terra1xacqx447ms
qp46qmv8k2sq6v5jh9fdj37az898.

Appendix C

Finding Categories

Gas Optimization Gas Optimization findings do not affect the functionality
of the code but generate different, more optimal compiled code resulting in a
reduction on the total gas cost of a transaction.

25

https://terra.stake.id/?#/address/terra1xacqx447msqp46qmv8k2sq6v5jh9fdj37az898
https://terra.stake.id/?#/address/terra1xacqx447msqp46qmv8k2sq6v5jh9fdj37az898

Mathematical Operations Mathematical Operation findings relate to mishan-
dling of math formulas, such as overflows, incorrect operations etc. Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow Control Flow findings concern the access control imposed on
functions, such as owner-only functions being invoke-able by anyone under
certain circumstances.

Volatile Code Volatile Code findings refer to segments of code that behave
unexpectedly on certain edge cases that may result in a vulnerability.

Data Flow Data Flow findings describe faults in the way data is handled at rest
and in memory, such as the result of a struct assignment operation affecting an
in-memory struct rather than an in-storage one.

Language Specific Language Specific findings are issues that would only arise
within Solidity, i.e. incorrect usage of private or delete.

Centralization / Privilege Centralization / Privilege findings refer to the logic
or implementation of the code exposing to concerns or scenarios that would go
against decentralized manners.

Coding Style Coding Style findings usually do not affect the generated byte-
code but rather comment on how to make the codebase more legible and, as a
result, easily maintainable.

Inconsistency Inconsistency findings refer to functions that should seemingly
behave similarly yet contain different code,such as a constructor assignment
imposing different require statements on the input variables than a setter function.

Magic Numbers Magic Number findings refer to numeric literals that are
expressed in the codebase in their raw format and should otherwise be specified
as constant contract variables aiding in their legibility and maintainability.

26

Compiler Error Compiler Error findings refer to an error in the structure of
the code that renders it impossible to compile using the specified version of the
project.

Disclaimer

This report is subject to the terms and conditions (including without limitation,
description of services,confidentiality, disclaimer and limitation of liability) set
forth in the Services Agreement, or the scope of services, and terms and condi-
tions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the
Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report is not, nor should
be considered, an “endorsement” or “disapproval” of any particular project or
team. This report does not provide any warranty or guarantee regarding the
absolute bug-free nature of the technology analyzed, nor do they provide any
indication of the technologies proprietors, business, business model, or legal
compliance.This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report in no way
provides investment advice, nor should be leveraged as investment advice of
any sort. This report represents an extensive assessing process intended to help
our customers increase the quality of their code while reducing the high level of
risk presented by cryptographic tokens and blockchain technology. Blockchain
technology and cryptographic assets present a high level of ongoing risk. The
Z Institute’s position is that each company and individual are responsible for
their own due diligence and continuous security. The Z Institute’s goal is to
help reduce the attack vectors and the high level of variance associated with
utilizing new and consistently changing technologies, and in no way claims any
guarantee of security or functionality of the technology we agree to analyze.The
assessment services provided by The Z Institute are subject to dependencies and
under continuing development. You agree that your access and/or use, including
but not limited to any services, reports,and materials, will be at your sole risk
on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
The Assessment reports could include false positives, false negatives, and other
unpredictable results. The Services may access, and depend upon, multiple lay-

27

ers of third-parties. ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT,
WORK PRODUCT, OR OTHER MATERIALS,OR ANY PRODUCTS OR RESULTS OF
THE USE THEREOF ARE PROVIDED “AS IS” AND “AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM
EXTENT PERMITTED UNDER APPLICABLE LAW, THE Z INSTITUTE HEREBY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR
OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, THE Z INSTITUTE
SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANT ABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT,
AND ALL WARRANTIES ARISING FROM THE COURSE OF DEALING, USAGE,
OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, THE Z INSTI-
TUTE MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS,
THE ASSESSMENT REPORT,WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF,WILL MEET THE CUSTOMER’S
OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT,
BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SER-
VICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR
ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, THE Z INSTITUTE
PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTA-
TION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIRE-
MENTS,ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH
ANY OTHER SOFTWARE,APPLICATIONS, SYSTEMS OR SERVICES, OPERATE
WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STAN-
DARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR
WILL BE CORRECTED.WITHOUT LIMITING THE FOREGOING, NEITHER THE
Z INSTITUTE NOR ANY OF THE Z INSTITUTE’S AGENTS MAKES ANY REPRE-
SENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE
ACCURACY,RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT
PROVIDED THROUGH THE SERVICE. THE Z INSTITUTE WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,OR INACCU-
RACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF
ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II)
ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSO-
EVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES,
ASSESSMENT REPORT, OR OTHER MATERIALS.ALL THIRD-PARTY MATERIALS
ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OR CON-
CERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER
AND THE THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MA-
TERIALS.THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS

28

HEREUNDER ARE SOLELY PROVIDED TO CUSTOMER AND MAY NOT BE RELIED
ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY IDEN-
TIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,ANY OTHER
PERSON WITHOUT THE Z INSTITUTE’S PRIOR WRITTEN CONSENT IN EACH IN-
STANCE.NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH SERVICES, AS-
SESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO SUCH
THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST THE Z
INSTITUTE WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND
ANY ACCOMPANYING MATERIALS.THE REPRESENTATIONS AND WARRANTIES
OF THE Z INSTITUTE CONTAINED IN THIS AGREEMENT ARE SOLELY FOR
THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE
ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER
BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO SUCH
THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST THE Z
INSTITUTE WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR
ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS
AGREEMENT OR OTHERWISE.FOR AVOIDANCE OF DOUBT, THE SERVICES,
INCLUDING ANY ASSOCIATED ASSESSMENT REPORT FOR MATERIALS, SHALL
NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

About

The Z Institute is an online blockchain talent incubator and accelerator with a
focus on bringing more developers to the space and a blockchain transformer that
empowers businesses in technology and research. Since 2017, The Z Institute’s
founding team has been providing consulting services in customized smart con-
tracts, DApp development, and security audit.

consulting@zinstitute.net

29

30

	Understandings
	Overview
	Plain Staking
	Liquid Staking
	Privileged Functions
	Risks of Exchange Rate Manipulation
	Consistency with Specifications

	Findings
	SSL-01 | Unclear error message
	Description
	Recommendation
	Alleviation

	SSL-02 | Redundant code
	Description
	Recommendation
	Alleviation

	SSL-03 | Unoptimized loop
	Description
	Recommendation
	Alleviation

	SSL-04 | Missing event emitting
	Description
	Recommendation
	Alleviation

	SSL-05 | Missing error type
	Description
	Recommendation
	Alleviation

	SSL-06 | Improper variable name
	Description
	Recommendation
	Alleviation

	SSL-07 | Unoptimized coding block
	Description
	Recommendation
	Alleviation

	SSL-08 | Privileged ownership
	Description
	Recommendation
	Alleviation

	SSL-09 | Possibility of for loop exceeds block limit
	Description
	Recommendation
	Alleviation

	SSL-10 | Unused imports
	Description
	Recommendation
	Alleviation

	Appendices
	Appendix A
	Exchange Rate Manipulation Analysis

	Appendix B
	Consistency with Specifications

	Appendix C
	Finding Categories

